
1934 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 10, OCTOBER 1997

Automatic Netlist Extraction for Measurement-Based
Characterization of Off-Chip Interconnect

Steven D. Corey and Andrew T. Yang,Member, IEEE

Abstract—An approach is presented for modeling board-level,
package-level, and multichip module (MCM) substrate-level in-
terconnect circuitry based on measured time-domain reflectom-
etry (TDR) data. The time-domain scattering parameters of
a multiport system are used to extract a SPICE netlist from
standard elements to match the behavior of the device up to a
user-specified cutoff frequency. Linear or nonlinear circuits may
be connected to the model ports, and the entire circuit simulated
in a standard circuit simulator. Two- and four-port microstrip-
circuit examples are characterized, and the simulation results are
compared with measured data. Delay, reflection, transmission,
and crosstalk are accurately modeled in each case.

Index Terms—Circuit modeling, circuit simulation, identifica-
tion, interconnect modeling, state-space methods.

I. INTRODUCTION

A S THE rise times of digital signals enter the sub-
nanosecond range, the effects of off-chip interconnect

circuitry become increasingly important. Packaging and
board-level circuitry—electrically transparent at low frequen-
cies—can cause delay, crosstalk, and reflection transients.
If not considered during the design stage, these effects can
render a fabricated circuit inoperable. Cable and backplane
connectors can also cause failure at the system level if not
taken into account.

Interconnect circuitry has traditionally been characterized
for simulation using models composed of standard linear
elements derived from circuit materials and geometry. If
model topology and element values are well chosen, the
model will accurately represent the behavior of the physical
circuit within a frequency range. For simple circuits with
regular geometries, topology and element values may be
determined by inspection or by simple formulas. However, for
more complex circuits, automatic extraction is necessary [1],
generally by discretization of Maxwell’s equations. It is known
that an automatically generated netlist can be prohibitively
large, even for a circuit of modest physical size, since the
circuit must be discretized into pieces smaller than the smallest
propagating wavelength of interest. For this reason, methods
have been developed [2]–[4] for reducing a large netlist to an
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approximate low-frequency system if the size of the original
netlist is manageable. However, tuning such a reduced circuit
to match empirical data is difficult.

Distributed models have been presented as alternatives to
lumped-element approximation [5], [6]. These models are
generally derived analytically from Maxwell’s equations, sub-
ject to particular sets of boundary conditions and simplifying
approximations. Distributed models allow efficient simulation
of specific distributed geometries and may be scaled with
geometry, but they are not easily derived for three-dimensional
(3-D) circuits with complicated geometry and coupling.

Measurement-based modeling techniques are useful when
models based on field solution are difficult or costly to obtain.
Several such approaches have been presented to generate
SPICE-compatible models for certain types of commonly
occurring circuits [7], [8]. Models which allow direct inclusion
of measured (or computed) impulse-response data have been
proposed to simulate circuits whose characteristics are difficult
to describe by analytic or lumped representations. Frequency-
domain impulse-response approaches [9] are difficult to ex-
tend to the case of arbitrary nonlinear loads, although this
was accomplished in [10] via harmonic-balance techniques.
Techniques which require full convolution [11] can be compu-
tationally expensive if the system impulse-response waveforms
are long, although this can be partially remedied by recursive
evaluation of the convolution integral [12], [13]. However,
any model which directly incorporates impulse-response data
into simulation will not consist of standard SPICE elements,
and therefore, requires implementation of additional simulation
code. Furthermore, because each impulse-response waveform
is typically modeled separately, simulation time for an-port
circuit increases as .

This paper presents a verifiable approach for modeling
interconnect circuits on printed circuit boards, integrated-
circuit (IC) packages, or multichip module (MCM)/hybrid sub-
strates [14], [15]. A subcircuit consisting of standard SPICE
elements is automatically extracted from the measured time-
domain scattering step-response waveforms of a multiport
device under test (DUT). Rigorous treatment of potential ill
conditioning in the problem yields a more robust extraction
algorithm than presented in [13]. Lumped elements are used
to characterize the DUT, and the response of the model is
valid up to a specified maximum frequency or minimum
risetime on the input signal. As a SPICE subcircuit, the
model can be incorporated into a standard simulator and
connected by its port nodes to any other SPICE circuit—linear
or nonlinear. Because the approach is mathematically general,
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linear multiport circuits with arbitrary geometry and cross
coupling can be modeled without exact knowledge of their
internal characteristics. Furthermore, use of standard SPICE
elements ensures compatibility with existing simulation tools.
Results of the measurement, characterization, and simulation
of two- and four-port microstrip-circuit examples are included
in this paper. Comparison between simulation results and
measurement show that delay, reflection, and crosstalk are
accurately modeled.

II. BACKGROUND

In the approach presented in this paper, lumped-element
models are extracted directly from the measured time-domain
response of a circuit. Use of measured data greatly decouples
the modeling process from circuit topology and geometry,
since the internal structure of the circuit is of secondary
importance. Scattering parameters are employed for model
formulation since they are measurable at high frequency, and
because a scattering impulse response is typically shorter in
duration than its admittance or impedance counterpart.

A. Lumped-Element Impulse-Response Approximation

A circuit composed of resistors, inductors, capacitors, and
control sources excited separately by an impulse at each
port is described by the system of linear first-order constant-
coefficient differential equations [16]

(1)

The matrices and are constant, is the system
impulse response [16], andis the identity matrix.
The solution to (1) is

(2)

where

(3)

In general, the inputs and outputs of the system may represent
any set of state variables. If the right-hand side (RHS) of
(1) represents incident-voltage waves and represents
reflected-voltage waves, then is the scattering response
of the circuit.

An eigendecomposition of in (2) shows that if is
nondefective, each element of is a sum of weighted
exponentials of the form

(4)

where are the poles of the network, and the are the
residues of the scattering parameter element. Ifis allowed
to be defective [16], (2) represents a set of basis functions
similar to (4), which can describe any lumped or distributed
linear system over a finite frequency range.

B. Impulse-Response Sampling

In this paper, sampled time-domain waveforms are used to
generate a SPICE netlist. Equation (2) in the continuous-time
domain is related to the sampled-time domain of digitized
waveforms by defining

(5)

It follows that

(6)

(7)

That is, if the initial conditions of the continuous system
are set and no excitation is applied, the response at time

may be determined from the set of dif-
ference equations in (6). Furthermore, if the initial conditions
are set to , (6) computes samples of the impulse response
of the system. In essence, the impulse response of the
discrete system, which is the sampled impulse response of the
continuous-time system, is completely described byand .

Because a complete set of samples of the true impulse
response described by (5) cannot be measured due to the finite
bandwidth of excitation signals and measurement systems, the
samples must be approximated. In this paper, a frequency-
domain deconvolution scheme similar to that in [13] was used.
More robust de-embedding solutions may be found in the
literature [17].

III. A UTOMATIC NETLIST EXTRACTION

The modeling approach presented in this paper begins with
, which contains samples of the system impulse-response

matrix as introduced in Section II. Determination of and
from this measured data represents an inverse problem,

and therefore, tends to be ill conditioned. In this section the
problem is formulated, and a well-conditioned approach is
presented for its solution.

A. Problem Formulation

It can be seen from (6) and (7) that may be computed
from any two consecutive samples of the matrix , and

may be determined given and a single sample of
. However, since we begin with data measured at the

ports of the DUT, the entire matrix is
generally not available. That is, only an portion of
the impulse-response waveforms may be observed at the ports
of the DUT, leaving a number of the unknown. These
unknown elements are the scattering-parameter waveforms at
the so-calledinternal (nonport) nodes. To deal with these
unmeasurable entries in , it is partitioned according to

(8)

where , the port waveforms, are the portion of
that represents the full set of-port measurements. Only

is known from measurement, whereas the remaining
portions of the matrix—theinternal waveforms—are unknown.
Inspection of (6) reveals that the relationship does not require
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that be an matrix but that it need only be an
matrix, composed of columns of for any integer
. Therefore, (6) may be reduced to

(9)

and the equality is still satisfied. In order to solve for,
measured samples are substituted into (9) for various sample
points . The relationship may now be expressed, independent
of as

(10)

where is the number of measurement samples. Again it
should be noted that is known, while is un-
known. For notational convenience, (10) may be restated more
concisely as

(11)

However, the matrix is , where is the order of
the system of ordinary differential equations which describes
the network, and is therefore, not known at measurement time.
Since the dimension of is unknown, the dimension of
in (9) is also unknown. However, because only (the
behavior at the ports of the system) is being modeled, the
lower – entries in each vector are somewhat arbitrary.

Since the system is being modeled by, it is important
to keep as small in dimension as possible to minimize
model complexity. This is clearly achieved by minimizing the
number of rows in and . An eigendecomposition of a
nondefective in (5) results in

(12)

where contains the eigenvectors andthe eigenvalues of
. Each element of , and therefore, the columns of

and , are seen to be linear combinations of the eigenvalues
of raised to the power as follows:

(13)

where are the eigenvalues of . Since is the dimension
of , and should be chosen so as not to introduce
any terms into (13) which are not necessary to model the port
waveforms and . In this paper, the scheme used to
build and results in the following system of equations:

(14)

The matrix is the variant of corresponding to the
particular choice of internal waveforms in (14). Partitioning

(14) into port waveforms and internal waveforms in a manner
analogous to (10) and (11) results in

(15)

where

(16)

The internal waveforms and may be deduced directly
from (14). Since each set of internal waveforms in (14) is
a phase-shifted version of the set above it, it is a weighted
sum of the same set of exponentials, so that no eigenvalues
are necessary to express the internal waveforms which are
not already expressed in the port waveforms. For a one-port
measurement, (14) reduces to the formulation from [18], in
which is a scalar function.

Exact solution of (14) or (15) for (assuming a nonsingu-
lar ) results in an matrix whose sampled time-
domain behavior exactly replicates themeasured waveform
samples. However, if fewer than exponentials are required
to represent the port behavior, then the problem is underde-
termined. This implies that and are singular, and some
of their rows can be removed before solving the problem,
resulting in a smaller matrix , and therefore, a smaller model.

B. Internal-Waveform Selection

Because and are contaminated with measurement
noise, they generally will not be exactly singular, but instead
will be nearly singular, and therefore, poorly conditioned.
Any solution obtained in finite precision by inverting a near-
singular will be extremely sensitive to small variations
in and , specifically to perturbations caused by mea-
surement noise. In this paper, the problem is avoided by
application of the singular-value decomposition (SVD) [19]
which decomposes into

(17)

where is a diagonal matrix containing the singular values
of , is an orthonormal basis for the column space of

, and is an orthonormal basis for the row space of.
The singular values of provide a measure of how close
the matrix is to singularity. Specifically, if exactlysingular
values are larger than, then perturbing by order can
cause all but of its rows to become linearly dependent. It
is shown in [19] that application of decomposition with
column pivoting to compute an orthonormal basis for the first

rows of indicates which rows of are most linearly
independent. If only these waveforms are used, (10) reduces to

(18)

where the rows of are those chosen by the above algorithm
as being most linearly independent from each other and
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from the rows of . The corresponding rows of
[corresponding by row number in (14)] are retained to form

. Note that in the process of removing linearly dependent
rows, it is important to retain the rows of and , since
their relationship via maintains the port behavior of the
model.

Selection of this set of internal waveforms results in
a well-conditioned linear least-squares problem, and the
rows of effectively span the row space of , since
after a perturbation of order they spanned the discarded
rows of . Equation (18) may now be safely inverted via
least-squares to determine.

At this point, is taken to be , the linear
prediction matrix of (6), which is the sampled version of (2),
the modeling equation. To completely characterize the sampled
system, must be determined. This is accomplished by
noting from (7) that . However, because only the
first columns of and are known, the additional

– columns must be determined. Any set which preserves
the conditioning of the problem is valid, and we chose

(19)

where is the two-norm of .

C. Transformation to the Laplace Domain

Once and are determined, (3) and (5) are inverted
to compute from

(20)

which completes the desired model from (1). The eigenvalues
of are taken as those with an imaginary part between

and to limit the impulse response of the system above
the Nyquist frequency .

The matrix logarithm was computed via Parlett’s algorithm
[19]. Although a block version of the algorithm is necessary
to compute if the eigenvectors of tend toward
linear dependence, this situation was not encountered in any
examples.

D. Transformation to Admittance

If the model in (1) is built from sampled scattering impulse-
response data, is the reflected-voltage waveforms at the
ports, while the RHS is the incident-voltage waveforms. A
transformation is necessary if the model is to be evaluated in
an admittance-based simulator whose state variables are total
voltage and current. In this paper, the entries of the extracted
and matrices were treated as conductance and susceptance,
respectively, and were entered into the SPICE simulator via a
netlist of control sources and capacitors. A transformer such
as that shown in Fig. 1 was placed at each port to convert
the simulated total-voltage waveformsinto reflected-voltage
waveforms , and likewise to convert simulated current wave-
forms into incident-voltage waveforms. The transformer

Fig. 1. Transformer for simulation of scattering-based model in admit-
tance-based simulator.

is based on the relationship

(21)

Before the simulation netlist was actually written, a final
transformation based on the eigenvectors of the system was
applied to and to block diagonalize the lower right-
hand submatrices corresponding to the internal nodes without
changing the port behavior of the model. This transformation
reduces simulation time by reducing the number of branches
in the circuit from to .

E. Asymptotic Stability and Passivity

The simulation model as derived above results in an impulse
response of the form shown in (2). In the scalar sense, each
element of the impulse–response matrix is an equation of the
form (4). Asymptotic stability requires that the eigenvalues
of or poles must all have negative real parts. Although
the method presented in this paper places no constraints
on the extracted poles, it computes a well-conditioned set
which accurately represents the data. For this reason, if the
sampled data is decaying, negative poles are extracted. Any
positive poles would necessarily be accompanied by very
small residues so as not to destroy the fit to the data, and as
such could be removed without consequence. In the examples
presented in this paper, no positive poles were encountered.

Although asymptotic stability does not imply passivity, the
behavior of the extracted network closely matches that of
the measured passive DUT. For this reason, deviations from
passivity will be small. While any deviation from passivity
implies that a termination may be chosen which shifts the poles
of the system into the right half-plane, if the deviation is slight,
such a termination is a degenerate case, not likely to occur in
an actual circuit setting. Furthermore, a frequency-dependent
loss may be added to the extracted circuit to ensure passivity,
although such techniques are not discussed in this paper.

F. Computational Complexity

The computational cost of the algorithm presented is pri-
marily due to computation of the SVD in (17). Although the
SVD is computed iteratively, it generally scales with the cube
of the dimension of a square matrix, which translates into

for in (17). It can be seen that for a system
with a large number of ports , partial SVD techniques [19]
are necessary to compute the subset of the singular values and
singular vectors necessary for internal-waveform selection.
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Fig. 2. Two-port microstrip example circuit. The physical distance between
ports 1 and 2 is approximately 14 cm.

(a)

(b)

Fig. 3. Comparison of modeled and measured data for two-port example. (a)
Open-circuit reflection at port 1 in response to a 35-ps step. (b) Short-circuit
reflection at port 1 in response to a 35-ps step.

G. Model Reduction

In general use, the frequency content of signals incident
on the circuit being modeled may fall significantly below
that of the time-domain reflectometry (TDR) step. If so, it
is desirable to use a simpler model that is valid over the
frequency range of use to reduce simulation time. Various
reduction schemes have been proposed in the literature [2]–[4].
In this paper, a reduction scheme similar to that presented
in [4] was used as a post-processing step to reduce model
complexity while preserving the response of the model over
a requested frequency range.

IV. EXAMPLES

In this section two example circuits are characterized. The
first is a two-port transmission-line circuit with an inductive
discontinuity. Reflection and transmission are simulated for
various independent terminations and compared with mea-
sured results. Second, a pair of tightly coupled nonuniform
microstrip lines is modeled. Reflection, transmission, and
crosstalk are simulated for various terminations and the results
are compared with measured data.

TDR measurements were made with a Tektronix 11 801A
Digital Sampling Oscilloscope and SD-24 TDR Sampling

(a)

(b)

Fig. 4. Evaluation of the model of the circuit in Fig. 2. (a) Comparison of
1-, 10-, and 32-GHz reflection magnitudes at port 1 with measured data in
the frequency domain. (b) Matched-load reflection at port 1 and transmission
at port 2 for 1- and 32-GHz models in response to a 500-ps step.

Head. The TDR is connected to the DUT by 501 , 2
.02-ns coaxial lines. Circuit simulations were performed

using HSPICE.1

A. Two-Port Microstrip Circuit

The two-port microstrip circuit in Fig. 2 was characterized
according to the method presented in this paper. The circuit
consists of two lengths of 50-transmission line connected by
a short piece of soldered wire, and has a 50-3.5-mm coaxial
connector at each end. The physical length of the circuit is
about 14 cm.

Due to the ideal delay present in the system, 69 poles
were necessary to represent the four scattering parameters
to within 2% accuracy up to 32 GHz. The generated SPICE
netlist representing the admittance of the DUT had 71 nodes.
To evaluate the accuracy of the extracted model, port 1 was
driven by a 500-mV 35-ps step input through a 50-output
resistance, and port 2 was terminated by a resistance.
Fig. 3(a) compares simulated voltage at port 1 for

with TDR data measured for port 2 unterminated. Fig. 3(b)
compares simulated voltage at port 1 for with
TDR data measured for port 2 short circuited. Initial delay and
reflection are accurately modeled in the simulated waveforms,
and successive reflections due to the mismatched loads are
also accurately represented.

Models were created which were accurate from dc to 1,
10, and 32 GHz. The models had 12, 49, and 71 nodes, re-
spectively. Fig. 4(a) compares the return losses of the various

1HSPICE, Meta-Software, Inc., version H95.1, Campbell, CA, 1995.
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Fig. 5. Four-port microstrip example circuit. The physical distance between
ports 1 and 2 is approximately 14 cm.

Fig. 6. Simulated and measured open-circuit reflection at port 1 and crosstalk
at port 4 for the circuit in Fig. 5. Simulations were performed using the
13-GHz model and a 35-ps input step.

extracted models with that of the measured response. Fig. 4(b)
compares simulated reflection at port 1 and transmission at port
2 for for the 32- and 1-GHz models in response to
a 500-ps step. The two models are seen to behave identically
given this excitation.

B. Four-Port Microstrip Circuit

The four-port microstrip circuit in Fig. 5 consists of two
mirrored microstrip lines of varying width terminated at each
end by 50- SMA coaxial connectors. There is no ground
plane under the majority of each trace, resulting in significant
crosstalk between the two lines. The physical length of each
run is about 14 cm.

A total of 148 internal nodes were required to model the 16
scattering parameters to within 2% accuracy up to 13 GHz. To
demonstrate the accuracy of the model, port 1 was driven by a
500-mV 35-ps step input through a 50-output impedance and
port 2 was terminated by 50 . Ports 3 and 4 were terminated
by 50- resistors. Fig. 6 compares simulation results for
reflection at port 1 and crosstalk at port 4 with measured
results for which port 2 was unterminated while ports three
and four were matched. The simulated and measured curves
are nearly overlapping at the scale shown.

Reduced models were also extracted which were accurate
to within 2% up to 100 MHz, 1, and 10 GHz. These models
contained 12, 23, and 103 nodes, respectively. Fig. 7 compares
the magnitude of the reflection at port 1 of each model with
measured data.

V. CONCLUSION

This paper presented a general approach for characterizing
interconnect circuitry at the board, package, and MCM sub-
strate levels using measured time-domain data. The approach
begins with TDR data measured at the ports of a DUT,

Fig. 7. Frequency-domain reflection magnitude comparison of measurement
and the 100-MHz, 1-, and 10-GHz models of the circuit in Fig. 5.

and automatically extracts a SPICE subcircuit netlist whose
port behavior matches that of the DUT to within a specified
accuracy up to a specified frequency. Potential ill conditioning
is handled rigorously and robustly. Interconnect delay and
reflection, as well as crosstalk between multiple conductors
of varying geometries, are modeled as accurately as they can
be measured. The models are in standard SPICE format, which
allows them to be evaluated in any SPICE-based simulator in
conjunction with nonlinear circuitry. Two-port and four-port
microstrip circuit examples were measured, characterized, and
simulated, and the results were compared with measured data
to demonstrate the validity of the approach.
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